

SAMPLE SECTIONS
Included are several sample sections from Designing
Web Applications. They are pulled from different parts
of the book. I hope you find them useful!

The next page is the table of contents for the full
book. Followed by a few excerpts.

ii

© 2012 Nathan Barry. All Rights Reserved.

Please do not distribute or share without permission. If you have questions get in touch. My
email address is nathan@thinklegend.com. I try to respond to all the email I receive.

TABLE OF CONTENTS

1. Introduction

2. Understanding The Problem

3. Refine The Experience

4. Planning The Interface

5. Adding Style

6. Polishing Your Design

7. Going To Market

8. Testing Your Assumptions

9. Closing Thoughts

Whew, this is a hot topic. Get a few engineers and designers in a
room and you can have a fiery debate about when to save data in
your web application. I know I have. At a previous software startup we
argued about this every time it came up and I still don’t think we got it
right everywhere. On the surface it is a problem of not wanting the
user to lose data. Ever. That should be our top priority.

But remember that we are designing not just based on features, but
also for emotion. We want the user to feel that their data is safe and
that our software will take care of them. So the last thing we want is
any confusion as to whether or not their data is saved. Imagine you’ve
just filled out a detailed form on a page and are ready to close the
browser. You think the page has autosaved, since there isn’t a save
button, but you aren’t sure. Not knowing for sure creates anxiety.
Anxiety that we want to avoid. Maybe it was nice that the software
has been saving all along, so their data is perfectly protected. But
they don’t know that. Keeping the user informed should be a top
priority.

So in the times that I use autosave I like to have an explicit save
button as well. That way the user can always click that to be certain
that they won’t lose their hard work.

The Solution

Assuming we’ve decided a page should have autosave, what is the
best way to implement it? A complete solution requires three
elements. Gmail does this perfectly, so I’ll use them as an example.

First you must have an explicit save button. This should let the user
save anytime there are unsaved changes. Second, the save button
should be disabled if there aren’t any changes to save and become
clickable as soon as an unsaved change has been made. This gives
the user confidence that their changes are saved. Finally, you need a
timestamp. Gmail uses the simple text, “Draft saved at 8:15 AM (3
minutes ago).” Perfect.

Section 1

SAVING

3

In case my computer or browser crashes I have the benefits of
autosave, but I also have complete confidence in my own ability to
save data. This is a classic case of over-communicating with the user
to give them confidence. Remember, it’s about how we make them
feel.

When is autosave not needed?

This doesn’t mean that autosave is needed on every form. It is
certainly not needed for short forms that won’t have much data
added. As a general rule, if it takes less than 2 minutes to recreate the
data, then autosave is not needed.

Everyone is accustomed to using a save button to save the page. So if
the risk of data loss is low, just stick with a simple save button.

Leaving the Page

Whether you use autosave or a manual save you should check for
unsaved changes when the user is about to leave. If they are about to
lose changes it is a good idea to let them know. After all, our top
priority when designing our save processes is to keep them from
losing data.

Gmail just uses a simple alert that says, “Your message has not been
sent. Are you sure you want to leave this page?” This runs whether I
am closing the tab or navigating away with the URL or back button.

4

When deleting an object, the easiest thing to do is ask, “Are you sure you want to delete
the last year of accounting data?” with simple a simple Yes / No response. The problem
with this approach is that we are used to dismissing dialogs like this every time we use
the computer. So many actions require dismissing a dialog that we don’t think twice
before clicking Yes …and losing months of vital information.

The flip-side is that this may be a common task that the user does quite often. In that
case we want to just let them perform the task without constantly interrupting them with
dialogs that block their path.

The Solution

The solution is to let them do the action they requested, in this case delete a year’s
worth of accounting data, without any warning or dialog. The reason is that the “Oh, ****”
moment, where they realize what they’ve done, doesn’t set in until after confirming the
action. So that extra dialog doesn’t even register for the user. They often won’t realize
the mistake until after it is done.

Section 2

DESTRUCTIVE ACTIONS

5

So let them do it, but on the next screen where you show a notification
of what just happened, display an option to undo. “Accounting data
deleted successfully. Would you like to undo?”

This would just be a simple inline message with the notification, not
requiring an interaction. As software designers we want to trust the
user that they actually wanted to do the action they told the software
to perform. The accounting software Freshbooks warns the user far
too often. If you try to add a task to a project while on the timesheets
page, it asks you if you are sure you want to do that.

Since all the information on the timesheets interface is already saved,
there is no reason to question the user for such a basic action. That
would be like your waiter asking you, “Are you sure?” after every item
you say you want to order for dinner. Trust the user and give them an
option to undo if they make a serious mistake.

Trash

You can also use the concept of a Trash, like on the desktop, to allow
users to undo actions at any time. WordPress added a trash feature so
that you can delete blog posts and comments without worry, but
always recover them if needed. Many applications never permanently
delete information, but instead just hide it from the interface. This is
just a way to expose that data back to the user in case they want to
recover it (without contacting Support).

6

Where to place delete buttons?

I like to place delete buttons in two places: on the list of objects (let’s
say invoices in Freshbooks), and then again on the details page.
Freshbooks has an option to delete invoices from the invoice list,
which is good, but they don’t have an option when working with a
specific invoice.

Basecamp, on the other hand, has both. When viewing a to-do list you
can mouse over a particular item to see a trash icon. Or when viewing
the details of that to-do item a delete button is provided on the right
side.

Potentially Destructive

Now there are other actions that may not actually delete information,
but could be destructive for the user. Sending email is a great
example. You could include the wrong people in an email, send it too
early, or forget to include attachments. Many embarrassing emails
have been sent through simple mistakes that the sender wishes they
could take back. Just like our delete examples above, the mistake
won’t be realized until after the email is sent. So not only would a
confirmation box be annoying to the user every time they want to send
an email, it also wouldn’t do any good.

Gmail’s solution was to include an optional 30-second delay when
sending an email (you can enable it in Gmail Labs). If you wanted to
send the email, this is such a small delay that it doesn’t matter. After
all, it doesn’t require any extra action from you. But if you made a
mistake it gives you enough time to realize the mistake and stop the
email before it sends.

In software that sends email notifications it may be good to consider
including features such as the 30-second delay. Freshbooks emails
invoices and estimates to clients; the user may want to be sure
invoices are mistake free before sending.

Think through your software for examples of destructive actions and
how you can minimize the damage.

7

Really Destructive

In MailChimp you can delete a field from a signup form for any of your
email lists. Not a big deal, right? Except that deleting that field will also
remove that column from all of your existing data that you have
collected from the form. Ouch! That could be really costly. So they
display a dialog that explains this and forces you to type in DELETE (in
all caps) in order for it to actually perform the delete.

This is a case where they should warn you and let you undo. But here
the extra warning, and forcing the user to read it, can help prevent
disaster.

8

The blank slate is what I call a screen with dynamic
content, before that content has been created. So the
question is, what do you show on the blank slate? Most
software just shows a message saying “No Invoices
Found” (or something similar) and call it good. But
that’s not good enough. Remember that you want to
teach the user how to use your software every chance
you get, and here you have a perfect opportunity.

Chances are, since they don’t have any invoices,
they haven’t created one before. So we should use
that empty space where the invoices will go in the
future to teach them about invoices and how to
create them.

Flow uses a simple message to introduce the idea of
creating a task and to tell you what to do next.

Freshbooks explains what estimates are and how to
use them, giving you a button to create an estimate
right away.

Section 3

THE BLANK SLATE

9

What to Include

A blank slate screen should include a few basic elements:

• Say what will go on the page (tasks, invoices, etc).

• Explain any information someone may want to know about that thing
if they are encountering it for the first time.

• Show how to create that thing.

Just take that opportunity to teach the user how to use your software
better.

A Common Mistake

A common mistake in your first-run experience is to have a help
tutorial that takes the user through the setup process. Like a setup
wizard in old desktop software this process creates an entirely new,
though step-by-step, UI for getting started. The problem with this is,
though you may explain some concepts of your software, this is an
interface they will never see again.

The most common example is having a button on your blank slate
screen to create a new object. This would be fine, except that is where
you are training them to click. As soon as the first object is created,
the blank slate disappears, and the method they learned to create with
is gone as well.

Instead, it is better to use the blank slate to point to a permanent UI
button that will be available every time. This way if the message or
tooltip is gone, they are still using the same button as last time.

It is very important that you teach users to use the actual software the
first time around. Don’t use a pseudo-interface that will be gone after
the first run experience is complete. This also means that you should
provide pointers and tooltips to the actual functions, not a screenshot
of what you want the user to do next. Just remember to teach through
practice. Guide them through the step-by-step process of using the
actual application.

10

In Basecamp Classic, the blank slate screens have a button to Add
Time (or whatever the action for that page is), but it disappears once
the first time is added. This was fixed in the latest version of
Basecamp, which actually uses an arrow to point to a constant button
from the blank slate message.

Teach your users one way to use the application, and be consistent.

Isn’t the blank slate just a help screen?

Well, yes and no. It does help the user understand the software, which
is really important, but unlike most help, it is low friction and only there
on the first run, when the user needs it most. After they know how to
interact with that element, it won’t appear again. Basically, it is an easy
way to show help only when it is needed.

11

The first thing to know is that dashboards are often not
necessary. If your application is fairly small or focused around a
single task then you may be better off taking the user to a task
page. In our sample time-tracking application I decided a
dashboard is not needed and made the projects page the
default page after the user signs in. So if you are short on time
and need to cut features, a dashboard is a great place to start.

The place for a dashboard

Just because a dashboard shouldn’t be at the top of your
development priorities, doesn’t mean there isn’t a place for a
well designed dashboard. For some apps that include analytics
or sales information a dashboard is critical. Just think about an
application like Stripe, which processes credit cards. When I
sign in to Stripe the first thing I want to know is how many
sales I’ve made. Next I want to know how that trends over time
with a graph.

This is where a dashboard is perfect. The key metrics can be
displayed large and bold, along with graphs to give historical

Section 4

DESIGNING THE DASHBOARD

12

information. Compare this to the experience of being dropped on the
Payments page. Sure, maybe there would be a total, but it would be a
long list of recent payments and would not be great for scanning
quickly.

If there are any metrics that prove your software is being successful
for their business, consider including them.

“Be clear first and clever second. If you have to throw
one of those out, throw out clever.”

-Jason Fried, 37signals

A springboard

Even a blogging software that may seem relatively simple can have a
lot going on. For the WordPress dashboard they pull in your draft
posts, recent comments, stats, and even let you write a post. This is
great for pulling all the most important information about your entire
web app into a single place. Not only does it give you information, but
each of these widgets has a link to more details. For example, the
Recent Drafts widget has a “View All” link so that you can jump

straight to all your draft posts. At the same time the Right Now widget
lets you click on the post or comment counts to be taken straight to
those pages.

Don’t just display static data. Let the user interact with it and use the
dashboard to jump off to different parts of your application.

Customizable Widgets

If you have as much information to include as WordPress does, you
should probably let the user customize it. On the WordPress
dashboard you can show or hide any widget, customize certain
settings, and change the order to prioritize what you care about. This
is not a requirement for your dashboard, but as your software is used
by a broader range of people it may be more helpful to let it be
personalized.

13

WordPress even lets you change the number of columns and drag
widgets between columns to get the right data density for your site.

Freshbooks lets you see your outstanding invoices in a nice big
number right away, always a reminder that I need to get better at
collecting on invoices. Though they have two columns, the Recent
Activity portion is fixed, but the sections in the right column can be
reordered.

Impressive Visuals

Usually a dashboard will be the user’s first introduction to your
product, so it helps if you make it look great. You can use graphs and
other data visualization to add some great visuals to the dashboard.
Icons, large numbers, and colors (within reason) help as well. Take a
look at ChartBeat for an example of a beautiful dashboard.

14

Naming

“Dashboard” may feel too formal and stuffy for your application.
Instead, consider using a different name like “Overview,” if it is a better
match. The financial management app Mint calls their summary page
Overview since that feels more accurate for their service. It still works
great; right after sign in I can see my cash balance, account alerts,
and upcoming bills at a glance. If I scroll further down I can see goals,
trends, and other useful information. It really is an overview of my
finances.

Final Thoughts

Always keep in mind that this dashboard is for your users. Not you. So
focus on what they need, not what you think would be cool. It may be
a good idea to build your own internal dashboard for traffic, support,
and sales information.

The best thing to do with a dashboard is make your best guess, then
iterate quickly based on testing and feedback. This is true for
everything in software design, but especially true for dashboard
design.

For more information on designing dashboards read Data Visualization
in Web Apps by Des Traynor.

15

http://blog.intercom.io/data-visualisation-in-web-apps/
http://blog.intercom.io/data-visualisation-in-web-apps/
http://blog.intercom.io/data-visualisation-in-web-apps/
http://blog.intercom.io/data-visualisation-in-web-apps/

Without a light source our designs would look flat and boring. Shadows, highlights, and
depth wouldn’t exist. These are all things that bring our buttons and other elements to
life and make them look like you can interact with them. Proper lighting is crucial to a
great interface.

A Light Source

Remember learning to draw in grade school? Someone may have told you to draw a
small sun in one corner of your image as a reminder where the light source was. Think
about it in the same way for your application. It doesn’t matter as much where you
choose to place it (either top left, top, or top right), but that you are consistent.

Personally, I prefer the light source in my designs to be 90 degrees. That is straight down
from the top. It gives things a nice uniform look that I like, though probably it is a habit I
brought over from designing for the iPhone (where the light source is always 90
degrees).

Section 5

LIGHTING & GLOSS

16

The Implications

Once you have a light source, it is time to think about what that means
for each of your elements. Say our light source is 90 degrees. That
means all the highlights need to be on the top and the shadows need
to be along the bottom. The left and right edges of your elements
should be mostly free of shadows and highlights. One reason I prefer
this method is that drop-down menus and other floating elements will
have a shadow on both the left and right side which looks better to
me.

If instead you have an angle of 120 degrees (coming down from the
top left), which is the Photoshop default, then your highlights will be
on the top and left sides and the shadows will be on the bottom and
right sides of each element. Again, it doesn’t matter so much what you
choose, so long as you are consistent. This is where the global light

feature in Photoshop can be helpful, as it will force your light direction
to be the same on all elements.

Continue to apply this to text shadows and any other elements where
you are using lighting to give the appearance of depth.

Gloss

Really, gloss is a texture. Unlike a repeating wood pattern or linen
texture, it is not obvious, but it still describes the texture of the
element. We know that a button with gloss on it is smooth and shiny.
The shape of gloss depends on each element. A heavily rounded
button will have an entirely different reflection than something that is
flat.

Generally, you want to keep gloss subtle. If used, it should add a little
bit of detail to your element, but not scream for attention. Back in
2004 to 2006 heavy gloss buttons were in style; now they are just a
great way to make your site look outdated.

17

A Recessed Effect

To make a button look recessed, you just need to flip the highlights
and shadows. Now the highlight would be on the bottom, the shadow
on the top. This is helpful for the pressed or active states on buttons.
Also, an inner shadow will help enhance the effect.

One Pixel Highlights & Shadows

I love really crisp looking interfaces. Where the details of each line and
highlight really stand out. This effect is created with lots of 1 pixel
highlights and shadows. A basic example is a recessed dividing line. It
is just made up of two lines. Dark on top, light on the bottom. The
highlight on the bottom edge changes it from a flat, dark line, to
something that actually looks indented in the page.

These simple one pixel lines can be used in so many places. But there
are a few basic rules to follow.

• To make a light colored element look recessed on a darker
background it needs a 1 pixel dark shadow along the top edge. So
that would be a Y position of -1.

• To make a dark element look recessed on a light background it
needs a 1 pixel highlight on the bottom edge (a Y position of 1).

Those two rules apply to text, buttons, message boxes, icons, and just
about anything else. You can see them both in use if you look closely
at the audio player design above. Look for which lines are dark and
which are light.

These highlights and shadows will make your design look more
realistic, but if you take it too far, then the effect is just tacky.

18

ENJOYED THE SAMPLE?
Purchase Designing Web Applications when it is

available on December 12th, 2012.

Learn more about the book »

http://nathanbarry.com/webapps/
http://nathanbarry.com/webapps/

